
1. Sensing your orientation: how to use an accelerometer

You've learned how to take a sensor, connect it to the Arduino, and use it
in a circuit. To move on to the goal of stability, we need to understand
how to use an accelerometer.

The sensor we'll work is a 5 degree of freedom Inertial Measurement
Unit, available from http://www.sparkfun.com/products/11072. It
combines a three axis ADXL335 accelerometer with a two axis IDG500
gyroscope. For now we'll just use the accelerometer.

A three axis accelerometer detects linear accelerations in three perpendicular directions. If it helps,
picture a ball inside a box with pressure sensitive walls. As you shake the box around, the ball presses
against different walls, which tells you the direction of acceleration. If the accelerometer is not moving,
the ball will still push against the walls simply due to gravity. By comparing the readings on the x, y
and z axis, you can work out the orientation of a stationary object.

a. Tape the accelerometer to the breadboard and connect it to the Arduino. Work out the minimum and
maximum acceleration readings in the x, y and z direction.

b. Use Processing to graph the acceleration in the x direction. Do the same for the y and z direction.
How do the x, y and z readings correspond to the physical orientation of the breadboard? How would
you move the breadboard to vary the x, y or z reading?

c. Set up 4 LEDs in the shape of a cross. Build a tilt sensitive platform where each LED lights up when
you tilt the breadboard in that direction. The brightness of the LED should correspond to the degree of
tilt - the steeper the angle, the brighter the light.

http://www.sparkfun.com/products/11072

292 MAKING THINGS TALK

surge

roll

heave

yaw

pitch

sway

X

Z

Y
gravity

Θ

Figure 8-14

Rotations and translations of a body

in three dimensions.

Figure 8-15

Calculating the portion of the force of

gravity based on the angle of tilt.

Determining Pitch and Roll

from an Accelerometer
Three-axis accelerometers like the one you're using

measure the linear acceleration of a body on each axis—in

other words, the surge, sway, or heave of a body. They

don't give you the roll, pitch, or yaw. However, you can

calculate the roll and pitch when you know the accel-

eration along each axis. That calculation takes some

tricky trigonometry. For a full explanation, see Freescale

Semiconductor's application note on accelerometers at

http://cache.freescale.com/files/sensors/doc/app_note/

AN3461.pdf. Here are the highlights:

The force of gravity always acts perpendicular to the

earth's surface. So when an object is tilted at an angle

(called theta, or q), part of that force acts along the X axis

of the object, and part acts along the Y axis (see Figure

8-15). The X-axis acceleration and the Y-axis acceleration

add up to the total force of gravity using the Pythagorean

Theorem: x2 + y2 = z2.

Since you know that, you can calculate the portions of the

acceleration using sines and cosines. The X-axis portion

of the acceleration is gravity * sinq, and the Y-axis portion

is gravity * cosq (remember, sine = opposite/hypotenuse,

and cosine = adjacent/hypotenuse).

2. Where am I? Work out your angle with an accelerometer

a. Write a program that reads in the x, y and z accelerometer sensor values, and converts these numbers
into voltages. (Be careful about rounding errors. If you're dividing two numbers, the Arduino language
will round off the result, unless you put in the decimal form by hand. For example, 3/4 = 0, but 3/4.0 =
0.75)

Use the serial port to output all three voltages in the same line, with a code snippet like this:

Serial.print(xVoltage);
Serial.print(",");
Serial.print(yVoltage);
Serial.print(",");
Serial.println(zVoltage);

b. Next, we have to calibrate the accelerometer. While your program is running, play around with the
orientation of the breadboard. Watch the voltage values in the serial monitor. You'll notice that the
voltages aren't centered, so an orientation of zero degrees doesn't correspond to zero voltage. You can
fix this by subtracting a number from the voltage. Define three different offset values:

float xZero = ?; float yZero = ?; float zZero = ?;

and set them to appropriate values so that xVoltage - xZero and yVoltage - yZero are both zero when
the board is lying flat (x and y axis are zero degrees to the horizontal). Similarly, zVoltage - zZero
should be zero when the z axis is at 0 degrees to the horizontal.

c. The voltages should now be appropriately zeroed. But these voltages still need to be converted into
accelerations. When the accelerometer is sitting flat on the table, it should experience zero gs in the x
and y directions, and 1 g in the z direction. Use this to work out the overall scale factor. In the end, you
should have three accelerations, measured in g's.

float xAcc = (xVoltage - xZero)/Scale;
float yAcc = (yVoltage - yZero)/Scale;
float zAcc = (zVoltage - zZero)/Scale;

d. The last step is to go from accelerations to angles. You can work this out with some trigonometry. It's
trickier than it sounds, because you need to do this in a way that has no divergences - the angle
shouldn't blow up when the denominator goes to zero. One way out is to use an approximate answer,
such as in the code below. For the gory details on how this is derived, you can visit this link:
http://cache.freescale.com/files/sensors/doc/app_note/AN3461.pdf

New command: pow(x,2) raises x to the second power.

// apply trigonometry to get the pitch and roll:
float pitch = atan(xAxis/sqrt(pow(yAxis,2) + pow(zAxis,2)));
float roll = atan(yAxis/sqrt(pow(xAxis,2) + pow(zAxis,2)));
//convert radians into degrees
pitch = pitch * (180.0/PI);
roll = roll * (180.0/PI) ;

e. Print the results. Go to your serial monitor and check if the results make sense.

Serial.print(pitch);
Serial.print(",");
Serial.println(roll);

No matter how good your accelerometer is, you'll discover that angle readings aren't very accurate,
and can be quite noisy. The calculations above assume that the only force acting on the sensor is
gravity. But in reality, your sensor may be falling, shaking, rattling, or rolling. These forces lead to
additional accelerations or decelerations in the three axes. The sensor can't distinguish these new
forces from gravity, and so your angle reading can go haywire. In the next class, we'll add in data from
gyroscopes in order to help adjust for these forces.

3. Animate your orientation in real-time. Now in 3D!

In this project, we'll use the program that you just wrote. First, make sure that the only thing being
written to the serial port is the pitch and roll variables, using the chunk of code right above.

Next, follow the instructions on the next page to write a Processing program that will visualize the
orientation of your breadboard, in 3D.

296 MAKING THINGS TALK

This Processing

sketch reads the

incoming data from the microcontroller

and uses it to change the attitude of

a disc onscreen in three dimensions.

It will work with either of the accel-

erometer sketches above, because

they both output the same data in the

same format. Make sure the serial port

opened by the sketch matches the

one to which your microcontroller is

connected.

/*

Accelerometer Tilt

Context: Processing

Takes the values in serially from an accelerometer

attached to a microcontroller and uses them to set the

attitude of a disk on the screen.

*/

import processing.serial.*; // import the serial lib

float pitch, roll; // pitch and roll

float position; // position to translate to

Serial myPort; // the serial port

Connect It

The setup() method initializes the

window, the serial connection, and sets

the graphics smoothing.

8
void setup() {

// draw the window:

size(400, 400, P3D);

// calculate translate position for disc:

position = width/2;

// List all the available serial ports

println(Serial.list());

// Open whatever port is the one you're using.

myPort = new Serial(this, Serial.list()[2], 9600);

// only generate a serial event when you get a newline:

myPort.bufferUntil('\n');

// enable smoothing for 3D:

hint(ENABLE_OPENGL_4X_SMOOTH);

}

The draw() method just refreshes

the screen in the window, as usual.

It calls a method, setAttitude(), to

calculate the tilt of the plane. Then it

calls a method, tilt(), to actually tilt the

plane.

8 void draw () {

// colors inspired by the Amazon rainforest:

background(#20542E);

fill(#79BF3D);

// draw the disc:

tilt();

}

8 You will probably need

to look at the output of

Serial.list() and change

this number to match

the serial port that cor-

responds to your micro-

controller.

HOW TO LOCATE (ALMOST) ANYTHING 297

The 3D system in Processing

works on rotations from zero to 2*PI.

tilt() maps the accelerometer angles

into that range. It uses Processing’s

translate() and rotate() methods to

move and rotate the plane of the disc

to correspond with the accelerometer’s

movement.

8 void tilt() {

// translate from origin to center:

translate(position, position, position);

// X is front-to-back:

rotateX(radians(roll + 90));

// Y is left-to-right:

rotateY(radians(pitch));

// set the disc fill color:

fill(#79BF3D);

// draw the disc:

ellipse(0, 0, width/4, width/4);

// set the text fill color:

fill(#20542E);

// Draw some text so you can tell front from back:

text(pitch + "," + roll, -40, 10, 1);

}

The serialEvent() method reads all

the incoming serial bytes and parses

them as comma-separated ASCII

values, just as you did in Project 2,

Monski pong in Chapter 2.

8
void serialEvent(Serial myPort) {

// read the serial buffer:

String myString = myPort.readStringUntil('\n');

// if you got any bytes other than the linefeed:

if (myString != null) {

myString = trim(myString);

// split the string at the commas

String items[] = split(myString, ',');

if (items.length > 1) {

pitch = float(items[0]);

roll = float(items[1]);

}

}

}

298 MAKING THINGS TALK

Figure 8-16

The output of the Processing

accelerometer sketch.

Though it may seem like a lot of work to go

from the raw output of an accelerometer to

the visualization shown in Figure 8-16, it's

useful to understand the process. You went from the

translation of acclerations along three axes into analog

voltages, then converted those voltages to digital values

in the microcontroller's memory using analogRead().

From there, you converted the digital values into voltage

readings, and then converted those to acceleration mea-

surements relative to the acceleration due to gravity.

Then, you used some trigonometry to convert the

results to angles in degrees.

Address 2007 by Mouna Andraos and Sonali Sridhar

Address shows that location technologies don't have to be purely utilitarian.

Photo by J. Nordberg.

The advantage of having the results in degrees is that

it's a known standard measurement, so you didn't have

to do a lot of mapping when you sent the values to Pro-

cessing. Instead, Processing could take the output from

an accelerometer that gave it pitch and roll in degrees.

You don't always need this level of standardization. For

many applications, all you care about is that the accel-

erometer readings are changing. However, if you want to

convert those readings into a measurement of attitude

relative to the ground, the process you went through is

the process you'll use.

X

