
1. Enough with the angles!

Complete the module from last week, where you combine inputs from the accelerometer and
gyroscope to work out your angle. Use the Processing code to test if your code is working
well. It needs to be quick and responsive to sudden changes, like the board falling over.

2. Plug in Motors, Build a robot

In order to work power a motor, we need to draw more current than the Arduino is capable of
delivering. We can get around this problem using a motor driver 'shield'. Shields are stackable
Arduino-compatible boards that sit on top of your Arduino, and can enhance its capabilities. In
our case, the shield can power two DC motors and receive power from an external power
source (9V battery). We're using the Ardumoto shield whose specifications are available here:
http://www.sparkfun.com/products/9815

There are two goals for today's class.

A. Build a basic robot. Tape the motors
securely to the bottom of the cardboard box.
The Arduino can sit inside the box or be taped
on top. The motors you have are the Mini Metal
Gear Motor with a 24:1 built in gear ratio
(specifications at
http://www.sparkfun.com/products/8913). I
chose these to give you a reasonable tradeoff
between torque (measured in oz-inch or
Newton-meters) and speed (measured in rpm).

B. Learn how to control the motors. Make
your robot trace out a square. You'll have to
work out how to do an on-the-spot turn. How about tracing out an arc of a circle? Once you
have this worked out, you can try out more interesting trajectories.

To get you started with motor control, I'm pasting below a section of the Ardumoto Quickstart
guide. When finished, your two motors will run sequentially in one direction at two different
speeds, then the opposite direction at two speeds.

Explanation of the Sketch

The example sketch has been designed to be as simple as possible. First, we identify what
pins will get what signals.

int pwm_a = 3; //PWM control for motor outputs 1 and 2 is on digital pin 3
int pwm_b = 11; //PWM control for motor outputs 3 and 4 is on digital pin 11
int dir_a = 12; //dir control for motor outputs 1 and 2 is on digital pin 12
int dir_b = 13; //dir control for motor outputs 3 and 4 is on digital pin 13

void setup()
{
 pinMode(pwm_a, OUTPUT); //Set control pins to be outputs

http://www.sparkfun.com/products/9815
http://www.sparkfun.com/products/8913

 pinMode(pwm_b, OUTPUT);
 pinMode(dir_a, OUTPUT);
 pinMode(dir_b, OUTPUT);
}

void loop()
{
 //set both motors to run at (100/255 = 39)% duty cycle (slow)
 analogWrite(pwm_a, 100);
 analogWrite(pwm_b, 100);

 digitalWrite(dir_a, LOW); //Set motor direction
 digitalWrite(dir_b, LOW); //Set motor direction

 delay(1000);

 //set both motors to run at 100% duty cycle (fast)
 analogWrite(pwm_a, 255);
 analogWrite(pwm_b, 255);

 delay(1000);

 digitalWrite(dir_a, HIGH); //Reverse motor direction
 digitalWrite(dir_b, HIGH); //Reverse motor direction

 delay(1000);

 //set both motors to run at (100/255 = 39)% duty cycle
 analogWrite(pwm_a, 100);
 analogWrite(pwm_b, 100);

 delay(1000);
}

The function of each line is likely self explanatory, but the way the jobs get done may not be if
you're new to Arduino. The digitalWrite function sets a pin either high or low, and is used here
for controlling the direction of the motors (dir_a corresponds to the motor strapped between
outputs 1 and 2, and dir_b corresponds to the motor strapped between outputs 3 and 4). The
delay functions are in milliseconds and are there to provide a little wait-time so the user can
more easily see the operation of the Ardumoto. The analogWrite function is a PWM (Pulse
Width Modulation) function, and it's this value that sets the speed of the motors (pwm_a goes
with dir_a and outputs 1 and 2, pwm_b goes with dir_b and outputs 3 and 4). This function will
accept values from 0 (motor's stopped) to 255 (full throttle). And...that's it! You're off and
running (into walls, chairs, cats...)

3. Give it a sense of balance.

Securely tape the accelerometer/gyroscope to the bottom of your robot (between the motors).
Why is this the best place to put it?

Test whether it's accurately measuring the tilt of your robot (you may need to re-calibrate
some of the zero values). Brainstorm with your team members, and take a first stab at writing
a program that would make your robot balance on two wheels.

http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation

